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Abstract. The expansion factor a i  of model polymer chains 500 links long subject to 
excluded volume restraints has been studied using Monte Carlo techniques. The chains 
were synthesised in the spatial continuum, and the Wall and Erpenbeck enrichment 
technique was used to overcome chain attrition. The main conclusions to be drawn from the 
work are as follows: (i) It is possible that one of the four closed-form expressions for a i  
adequately represents the expansion of the chains up to U = 0.6, where U is the excluded 
volume ratio. A necessary condition is N 2 100 for U = 0.2, increasing to N 2 500 for 
v = 0.6, where N is the number of links in the chain. (ii) The excluded volume should be 
taken as eight times the volume of the sphere representing the polymer repeat unit for 
chains with freely varying bond angles, and twice the sphere volume for chains with 
tetrahedral bond angles. (iii) The data at small v are in agreement with the perturbation 
theory expansion for a i  up to at least z -0.03. 

1. Introduction 

The expansion factor a i ( N )  for N-link polymer chains subject to excluded volume 
configurational constraints is defined by 

a i (NI = (R 3 / ( R  3 0  

where (RL) is the mean square end-to-end length of the chains and (R$)o is the 
corresponding quantity for random walk chains, i.e. chains with zero excluded volume. 
This expansion has been studied by many workers since the early 1950s (Yamakawa 
1971). The effective volume excluded to one segment of the chain by the presence of 
another is given by 

where 4 ( r )  is the segment potential. It has usually been assumed that the intrachain 
forces can be represented by a three-dimensional Dirac delta function; the negative of 0 
is called the binary cluster integral for a pair of segments. The perturbation theory 
development of Fixman (1955) yields 

(2) 
where z = (3/2mz2)3/2/3N1/2 and U is the bond length, usually taken as unity. The 
average molecular dimensions may be expressed in terms of three parameters, namely 

a i ( z )  = 1 +Alz +A2z2+A3z3+. . . 
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N, a and p, but since these parameters appear only as the two products Nu2 and N 2 p  
the perturbation theory is frequently called the two-parameter theory. 

According to Yamakawa (1971) the series in equation (2) converges very slowly. 
However, several authors (Domb and Joyce 1972, Aronowitz and Eichinger 1975, 
1976, Oono 1975a, b) have questioned its convergence; Edwards (1975) and Gordon et 
al (1976) claim that the expansion is only asymptotic, i.e. the series is not truly 
convergent for any finite nonzero z .  Many authors have provided alternative closed- 
form expressions for a i ( z ) ,  which are supposed to be valid over a wide range of z ,  
although subject to the condition N >> 1. Some of these expressions have been 
compared recently by Domb and Barrett (1976). In every case it is assumed that a i  is a 
function of z only; although the expressions predict very different a i ( z )  at higher z ,  
they have in common the result 

&(z) a ~ ~ / ~  
lim N-tm 

or 

It is not possible to differentiate between these expressions by comparison with 
experiment, because p and hence z is not directly observable. However, Monte Carlo 
techniques have been employed on digital computers to synthesise model chains whose 
configurational properties have then been analysed; a comprehensive review of this 
work has been written by Domb (1969). Most of the Monte Carlo data relate to ‘lattice’ 
chains, i.e. chains whose repeat units are represented by occupied vertices of some 
regular crystal lattice, and in which excluded volume restraints are imposed by requiring 
that no vertex of the lattice be visited more than once. The lattice chain data provide 
considerable support for the limiting behaviour given by equation (3), and also yield the 
result 

0*157*0.002 (three dimensions) 
f 0.002 (two dimensions) (S%)I(RL)= ( o.140 

where ( S L )  is the mean square radius of gyration of N-link chains. Domb (1963) 
therefore conjectured that the dimensionality of the lattice, rather than its structural 
detail, largely determines the configurational properties of the chains. Based on recent 
developments in the theory of critical point thermodynamics, Domb and Barrett (1976) 
have put forward the more specific proposal that, defining z*=hoz  where ho is a 
numerical scaling factor, a i ( z * )  is a universal function of z* for all chains at large N. 
Their result is 

ai0(z*)  = 1 + ~ Z * + ~ T Z * ~  

and they claim that this formula is a reasonable approximation for all z* of practical 
interest. For lattice chains, ho is the volume per lattice site divided by /3 ; its value for the 
continuum is not yet known accurately. 

The synthesis of off-lattice chains on a computer is very time consuming, because 
more frequent violation of the excluded volume conditions leads to much greater 
sample attrition than for lattice chains. The available data are those of Fleming (1967), 
Stellman and Gans (1972a, b), Grishman (1973), Smith and Fleming (1975) and Bruns 
(1977, with references to earlier work). The repeat unit of the chain is usually taken as a 
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hard sphere, and it is convenient to define an excluded volume ratio 

U = hard-sphere diameter/bond length. 

Chains containing up to 1024 links have been synthesised, from U = 0 (random walk) up 
to U = 2, employing the enrichment (Wall and Erpenbeck 1959) and/or dimerisation 
(Alexandrowicz 1969) techniques to reduce the sample losses. The salient feature of 
the data is the dependence of the exponent y in the equation 

(RC) = ANY (4) 

on U ;  it increases from unity at U = 0 to around 4 at U = 1. Bruns (1977) compared his 
data with several of the two-parameter closed-form expressions, and concluded that 
none of them was satisfactory. He conjectured that the discrepancy arises from the use 
of a pseudopotential in the two-parameter theory, the chain segments being represen- 
ted as points; the excluded volume is then effective only if two points coincide. This 
situation is accurately reproduced when synthesising on-lattice chains, and hence the 
agreement of the lattice Monte Carlo data with the theory. However, no two repeat 
units of a continuum model chain can ever occupy exactly the same volume, and thus a 
priori one should expect differences in this case. 

The purpose of this paper is to present further Monte Carlo data on the configura- 
tional properties of 500-link chains constructed in the spatial continuum, with either 
varying bond angles (VBA) or tetrahedral bond angles (TBA), over the range U = 0.1- 
1.0. These data are significantly different from those of Bruns (1977) and Grishman 
(1973). However, it will be shown below that the validity of the results obtained by 
these authors is doubtful. 

2. Synthesis of continuum chains 

The method of chain synthesis was very similar to that of Smith and Fleming (1975), 
except that the enrichment technique was used to counteract sample attrition, rather 
than inversely restricted sampling. Following the suggestion of Grishman (1973), the 
enrichment parameters s and p were chosen to ensure that, as far as possible, the chain 
population showed a steady decrease at successive enrichment points. To this end, 
effective non-integral p were sometimes introduced by choosing between p and p + 1 at 
each enrichment point. The various s, p combinations are given in table 1. 

In choosing a proposed direction for the nth bond, joining the centres of the nth and 
(n + 1)th spheres, the random number generator returned trial values of cos 6, and the 
angle q5,, 6, being the bond angle (0 c 6, c T for VBA chains) and q5" the angle of 

Table 1. s, p parameters used in the Wall and Erpenbeck (1959) enrichment technique. 

VBA chains 
v 0.1 0.2 0.4 0.5 0.6 0.8 1.0 
S 220 100 15 14 8 7 7 
P 2 7 3.6 7 4.7 7.7 16.6 

TBA chains 
V 0.1 0.2 0.4 0.5 0.6 0.8 1 .o 
S - 350 45 40 30 22 18 
P - 2 2 2 3 2.9 3 
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rotation about the bond (0 c 6, c 21r). In this way the probability distribution of the 
centre of the (n + 1)th sphere was maintained constant over the surface of a sphere of 
radius unity (the bond length) centred on the nth sphere. For TBA chains 0 = 109" 27', 
but 0 Q 4, S 21r as before. 

The method of checking for violations of the excluded volume conditions was that 
described by Smith and Fleming (1975). 

3. Results 

Mean values ( R k )  and (Sg) were calculated, the number of R& and S& values ranging 
between 2500 and 20 000 with N. Checks at U = 0.1 and 1.0 for N = 50,100,150, . . . , 
500 showed that the variance v& of the data varied little with U and N. The standard 
error in the (R&) values, defined as aN/(number of  sample^)"^, did not exceed 1.5% 
(RL).  The same was true of (Sg). 

Table 2 shows the values of the constants A and y obtained by least squares fits of 
the ( R k )  data to equation (4), using 25 points equally spaced in the range N = 20-500. 
The corresponding A' and y' values in the equation 

(s$) = A ' N ~ ' ,  ( 5 )  
are given in table 3. Equations (4) and (5) were first linearised by taking logarithms, so 
that the least squares fits effectively used the fractional rather than the absolute errors in 
the data. In this way one avoids giving disproportionate weight to the larger (Rg) and 
(sL) values. 

Figures 1 and 2 indicate respectively the accuracy of the fit between equations (4) 
and ( 5 )  and the Monte Carlo data, for VBA chains. The average discrepancy is about 
1.5%. Similar fits were obtained for TBA chains. 

F i b e l .  Variationof(Ri)withN,forve~chains.  ( a ) u  = l ~ O ; ( b ) v = 0 ~ 5 ; ( ~ ) ~ . = 0 ~ 1 .  0 
Monte Carlo data, - ( R % ) = A N Y ,  with coefficients given in table 2. 
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Figure 2. Variation of (SR) with N, for v ~ ~ c h a i n s .  (a) U = 1.0; ( b )  U =0.5; (c) U = 0.1. 0 
Monte Carlo data, - (SR) = A"'", with coefficients given in table 3. 

In order to check (at least partially) the accuracy of the computer programs, the 
excluded volume restraints were removed and (R&)o values obtained up to N = 500 for 
both types of chains. The expected results are (Yamakawa 1971): 

For VBA chains, 

( ~ 3 ~  = N (all N). 

For chains with fixed bond angle 8, 

or (R&)O=2N-1.5 for TBA chains with N a 1 0 .  The results obtained from least- 
squares fits, using 25 data points as described previously, were: 

for VBA chains, 

for TBA chains, 

(R&)o = (1.006 f O.OOS)N, 

(R&)o = (1.981 f 0.002)N + (1.313 *0.692). 

This level of agreement is considered satisfactory. 
There is always some risk (Domb 1963) that the use of the enrichment technique will 

bias the data, and therefore a further check was made by repeating some of the 
calculations up to N = 100 with much reduced enrichment levels. Once again the 
agreement was satisfactory; there were no indications of persistent unidirectional 
discrepancies between the two sets of data. 

4. Discussion 

4.1. Comparison with earlier data 

The present (R&) values for VBA chains are consistently less than those of Bruns (1977), 
but consistently greater than those of Grishman (1973). 
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In order to eliminate excluded volume contacts between spheres N + 1 and N - 1,  
the most frequently occurring mode of violation of the excluded volume conditions, 
Bruns chose the bond angles 6 in such a way that cos 8 was evenly distributed between 
(u2/2)- 1 and (u2/2)+ 1. This restriction will, of course, increase (RL)o. The expres- 
sion corresponding to equation (6) for this restriction is not readily obtained, but it 
would be expected to be of the form 

with f ( N )  being essentially constant and small in comparison with k l N  for N >> 1. In 
order to confirm equation (7), (R;)o values were obtained with the Bruns restriction on 
cos 8 for U = 0.5. A least-squares fit yielded 

It might be thought that, since Bruns generates short (eight-link) chains to use in his 
dimerisation process, the increase in (Ri)o due to the restrictions on cos 8 would be 
negligible. However, for U = 0.5 we obtained (Ri)o = 8.86 and 7.92 with and without 
these restrictions respectively, averaging over 20 000 chains; the analytical result in the 
latter case is (Ri)o = 8. Clearly the effect of the cos 6 restrictions is not negligible, even 
for short chains. 

Using equation (8) and Bruns’ (RL) values, one finds that the resulting a i  values are 
consistently about 10% less than those of the present work at U = 0.5. Presumably this 
is because the restrictions which he imposed on the bond angles decreased the effective 
excluded volume. 

As stated above, it is thought that the use of the enrichment technique has not 
significantly biased the present data. Even if it has done so, the first enrichment point is 
at N = 220 for U = 0.1 (VBA chains), and thus the only possible error for N s 220 is that 
due to the limited number of samples. It is reasonable to assume that the increase in 
(RL)o due to Bruns’ bond angle restrictions would be very small at U = 0.1, as also 
would any change in the effective excluded volume. Hence his (RL) values at t’ = 0-1 
should agree with those of the present work, up to N = 220 at least. He generated 
eight-link chains without enrichment, and then used the dimerisation technique to 
reach N = 1024. Certainly the two sets of values agree well at N = 8, but thereafter 
those of Bruns are 5-10% greater. It may be that use of the dimerisation technique has 
biased his data. 

Grishman (1973) simply rejected any bonds which led to an intersection between 
spheres N - 1 and N + 1.  It is known (Fleming 1967) that such a procedure yields lower 
values of the exponent y in equation (4), consistent with the lower (I?%) values which 
Grishman reports. 

The data of Smith and Fleming (1975) are in good agreement with those of table 2 
for U = 0.2 and U = 0.5, but at other values of U their (RS) values are consistently 
5-10% lower, for N =20-100. Smith and Fleming used the inversely restricted 
sampling technique to offset sample loss, but pointed out that the resulting data can 
readily be dominated by a few chains with high statistical weights, especially at the 
larger u values. This effect usually produces large oscillations in the variations of (I?:) 
and (SL) with N; Smith and Fleming observed such oscillations at tr = 1.0 for N > 110. 
However, one might expect that the data could be biased to a limited extent, due to the 
same cause, before such oscillations appeared. It seems likely that the results of Smith 
and Fleming were biased in this way. 
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The data of Stellman and Gans (1972a) for TBA chains at v = 1.0, obtained using the 
importance sampling technique of Metropolis et al (1953), are in excellent agreement 
with the results in table 2. With the exception of the U = 0.2 case, so also are those of 
Smith and Fleming (1975); this isolated discrepancy is probably due to the weakness of 
the inversely restricted sampling technique discussed above. 

4.2. Comparison with perturbation theory at low -7 

Given the doubt which has been expressed on the convergence of the perturbation 
theory expansion of equation (2), it is of interest to compare it with the present data for 
VBA chains. The immediate problem is to determine the correct value of p (see 
equation (1)) appropriate to a hard-sphere model. According to Bruns (1977), u0 < p s 
8 ~ 0  where vo is the hard-sphere volume. Flory (1953) suggests p = 8 0 0 ;  the relationship 
between /3 and the second virial coefficient in the theory of imperfect gases (Fowler and 
Guggenheim 1939) also suggests p = 8 ~ 0  (not 400 as stated by Smith and Fleming 
1975), and this figure has therefore been adopted in the discussion below. This point is 
raised again in § 4.3. 

The perturbation theory expansions (Yamakawa 197 1) 

CY = ( R  &)/(I? &)o = 1 + $2 - 2.075 z + 6 * 4 5 9 ~  - . . . (9) 

(10) 

are valid only in the limit /3 + 0, N + CO, ON 1’2 finite. Therefore we have chosen U = 0.1 
and N a 100 for the comparison presented in table 4. Remembering that the standard 
error in the Monte Carlo data is about 1-5%, the data are in agreement with the 
perturbation theory expansion up to at least z - 0.03. 

CY: = (S&)/ (S&)o = 1 + 1.2762 - 2.082t2+. . . 

Table 4. Comparison of perturbation theory (equations (9) and (10)) with Monte Carlo 
and ai values for VBA chains with U = 0.1. p =  8u0 assumed in equations (9) and (10). 

N 2 a i  (Perturbation a i  (Monte af (Perturbation af (Monte 
theory) Carlo) theory) Carlo) 

100 0.0138 1.0180 1.0150 1.0172 1,0200 
200 0.0195 1.0252 1.0285 1,0241 1.0292 
300 0.0239 1.0307 1,0364 1.0294 1,0335 
400 0.0276 1.0352 1.0421 1.0336 1.0361 
500 0.0309 1.0392 1.0466 1.0374 1.0380 

Taking /3 = 2v0 for TBA chains, to be justified in § 4.3, the chain expansion at U = 0-  1 
is too small to allow a meaningful comparison. For U = 0.2 and N = 100 we have 
z = 0.0276; the Monte Carlo values of a i  and CY; are 1.0274 and 1.0181 respectively, 
agreeing with the perturbation theory figures 1,0352 and 1.0336 within the standard 
error. 

4.3. Validity of the closed-form expressions for CY$ 

The following closed-form expressions for CY; were compared with the Monte Carlo 
data: 
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(i) a i  -CY: = 2.602 (Flory 1969) 
(ii) a i - a :  =$z (Flory and Fisk 1966) 

(iv) ( a i  - a ~ ) ( l +  1/3ai)3’2 = 2.0531 (Kurata et a1 1960) 
(v) ( Y ~ / ~ + c Y : / ~ - & = $ z  (Alexandrowicz 1968, Kurata 1968) 
(vi) ( a i  - a 2 , ) / ( 1 - 2 / 3 a i + 1 / 4 a i ) = ~ z  (Bueche 1953) 
(vii) a: - 1 = 22 (Fixman 1962) 

(viii) (4.67ai - 3*67)3’2 - 1 = 9.342 (Ptitsyn 1961) 
(ix) ( Y R  1 = 4 . 4 5 ~  
(x) [ ( a i -  0*572)/0*42812 - 1 = 6.232 

[(CY; - 0.541)/0*459]2’174 - 1 = 6.042 
(xi) aio = 1 + ? Z * + ~ T Z * ~  
(xii) a i  -0 .4931~~:  -0*2499ai”332 sin(1-073 In ( ~ R ) - O - 5 0 6 9 a i ~ ‘ ~ ~ ~  cos(l.073 In 

(YR)  = 2.6302 (Fujita et a1 1967) 
(xiii) a i  - 1 =~z(1+2 .9572) / (1+3-5132)  (Stockmayer 1977). 
Each of these expressions is valid only for N >> 1. The values of z required to equate a; 
as given by these expressions with the Monte Carlo data were therefore calculated at 
N=500,  over the complete range of t,. The implied p, expressed in units of the 
hard-sphere volume, varied very widely with t, for all expressions except (x)-(xiii). The 
variations for these four are given in table 5 ;  the /3 values derived from the a; values are 
also quoted for expression (x). The entries under t, = 0.1 can be disregarded, because in 
this case the sphere volume is so small that very small errors in the Monte Carlo data 
lead to large variations in the apparent p. In the range U = 0.2-0.6, B - 8v0 for VBA 
chains except for the Domb and Barrett expression, while p - 2u0 for all four expres- 
sions for TBA chains. p = 800 is expected for VBA chains, as discussed above, but 
p = 2u0 for TBA chains has not previously appeared in the literature. In figure 3 we have 

(Bueche 1953, James 1953) 2 4 (iii) a R - 1 = g a R z  

(Yamakawa 1968) 6.67 - 
(Yamakawa and Tanaka 1967) 

(Yamakawa and Tanaka 1967) 
(Domb and Barrett 1976, z* = hoz)  

Table 5. Values of B derived from four closed-form expressions for a i ,  expressed in units 
of the hard-sphere volume uo. 

U Yamakawa and Tanaka Stockmayer Domb and Barrett Fujita et al 
(1967) (1977) (1976) (1967) 

from a i  from a: 
VBA chains 
0.1 9.55 8.08 
0.2 7.55 7.46 
0.4 7.75 7.89 
0.5 8.10 8-35 
0.6 7.64 8.29 
0.8 5.88 6.87 
1.0 4.57 5.75 

TBA chains 
0.1 5.18 3.91 
0.2 1.74 1.90 
0.4 2.24 2.12 
0.5 2.13 2.08 
0.6 1.99 1.98 
0.8 1.22 1.34 
1 *o 0.90 0.94 

9.58 
7.54 
7.71 
8.23 
7.98 
6.46 
5.27 

5.18 
1.74 
2.22 
2.11 
1.97 
1.22 
0.91 

9.30 
6.82 
6.31 
6.63 
6.38 
5.14 
4.18 

5.11 
1.68 
1.92 
1.76 
1.62 
0.99 
0.73 

9.36 
7.10 
7.11 
7.70 
7.57 
6.25 
5.16 

5.13 
1.70 
2.06 
1.94 
1.82 
1.13 
0.85 
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2 

1 
0 5 15 20 25 lo N1/2 

Figure 3. Variation of a i  with N”* for VBA chains. Monte Carlo data: 0 t’ = 0.2; 
U = 0.4; A U = 0.6; V U = 0.8. Stockmayer expression (xiii) assuming @ = 8u0:  (a) U = 0.2; 
(b) U = 0.4; (c) U = 0.6; (d) U = 0.8. 

plotted some of the Monte Carlo a i  for VBA chains against and the correspond- 
ing a i  from expression (xiii) assuming = 8 ~ 0 .  At U = 0.2,0-4 and 0.6 respectively the 
differences between the two become less than the standard error in the Monte Carlo 
data for N > 100, 300 and 500 approximately. The discrepancies at low N almost 
certainly arise from the requirement N >> 1 for validity of the closed form expressions. 
At v = 0.8 the discrepancy decreases very slowly with increasing N, while at U = 1 .O (not 
shown in figure 3) it increases. Similar situations are found for the other three 
expressions. It would be necessary to extend the Monte Carlo calculations to much 
higher N to determine whether the apparent slow convergence at U = 0.8 is real, or 
merely due to error in the least-squares fits to equation (4). Such data would also enable 
one to differentiate with certainty between expressions (x)-(xiii). The Domb and 
Barrett expression is perhaps somewhat less attractive than the other three, because of 
the scaling factor ho which has to be evaluated for each type of chain. Its value for VBA 

chains appears to be approximately 0.82, and 0.87 for TBA chains. 
Figure 4 shows the Monte Carlo a i  as a function for NI’* for TBA chains, compared 

with the predictions of expression (xii) assuming /3 = 2v0. At U = 0.6 and N = 500 the 
two sets of values have not reached agreement within the error of the Monte Carlo data, 
contrasting with the VBA chain situation. This result is perhaps surprising, in view of the 
lower a i  values for TBA chains. At U = 0.8 and U = 1.0 the discrepancy between the 
two sets of a i  values increases steadily with increasing N, suggesting that any 
closed-form expression for a i  based on the two-parameter theory is likely to fail for 
U 3 0.8. 

4.4. Variation of y and y’ with v 

Tables 2 and 3 show that y and y’ increase fairly smoothly from unity at U = 0 to around 
5 at U = 1. One immediately asks whether much longer chains would show y = y’ ,  
independent of U. In other words, do all continuum chains show the same asymptotic 
configurational behaviour, but with the chain length required to attain such behaviour 
increasing with decreasing U? The present data do not support this proposition, in that 

6 
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Figure 4. Variation of a: with N”* for TBA chains. Monte Carlo data: 0 U = 0.2; R 
U = 0.4; A U = 0.6; B U = 0.8. Fujita et ai (19671, expression (xii) assuming B = 2u0: (a) 
U = 0.2; (b) U = 0.4; (c) U = 0.6; (d) U = 0.8. 

figures 1 and 2 do not show, at U = 0.1, any systematic deviation of ( R  5) and (SL) from 
equations (4) and ( 5 )  with increasing N; this is true also for U = 0.2 and U = 0-4. Such 
deviation would be expected if y and y’ increased with N. However, if such increases 
were very slow, they would be detected only by generating much longer chains. We 
hope to undertake such a study shortly. 

5. Conclusions 

The following conclusions may be drawn from this work: 

(i) It is possible that one of the four closed-form expressions for a i ,  due respec- 
tively to Yamakawa and Tanaka (1967), Stockmayer (1977), Fujita er a1 (1967) and 
Domb and Barrett (1976), adequately represents the expansion of spatial continuum 
chains up to U = 0.6. A necessary condition is N B 100 at U = 0.2, increasing to N b 500 
at U = 0.6. 

(ii) It is likely that any closed-form expression for a i  based on the two-parameter 
theory fails for U z 0.8. 

(iii) The excluded volume /3 should be taken as eight times the volume of the sphere 
representing a repeat unit of a VBA chain, and twice the sphere volume for TBA chains. 

(iv) The Monte Carlo data at small U agree with the perturbation theory expansion 
for a i  up to at least z -0.03. 

(v) For 20 < N < 500, the mean square end-to-end lengths ( R L )  and mean square 
radii of gyration (SL) increase as N v  and N”’ respectively, where both y and y‘ increase 
from unity at U = 0 to values slightly greater than 4 at U = 1.0. 
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